Emotion Detection Using Deep Learning Algorithm
نویسندگان
چکیده
Automatic emotion detection is a prime task in computerized human behaviour analysis. The proposed system an automatic using convolution neural network. end-to-end CNN therefore named as ENet. Keeping mind the computational efficiency, deep network makes use of trained weight parameters MobileNet to initialize On top last layer ENet, authors place global average pooling make it independent input image size. ENet validated for two benchmark datasets: Cohn-Kanade+ (CK+) and Japanese female facial expression (JAFFE). experimental results show that outperforms other existing methods detection.
منابع مشابه
Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملEmotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...
متن کاملSpoken Emotion Recognition Using Deep Learning
Spoken emotion recognition is a multidisciplinary research area that has received increasing attention over the last few years. In this paper, restricted Boltzmann machines and deep belief networks are used to classify emotions in speech. The motivation lies in the recent success reported using these alternative techniques in speech processing and speech recognition. This classifier is compared...
متن کاملFacial Emotion Recognition using Deep Learning
Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...
متن کاملMultimodal Emotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models from multiple physiological signals. For unimodal enhancement task, we indicate that the best recognition accuracy of 82.11% on SEED dataset is achieved with shared representations generated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of computer vision and image processing
سال: 2021
ISSN: ['2155-6989', '2155-6997']
DOI: https://doi.org/10.4018/ijcvip.2021100103